Virginia
Greenhouse Gas Inventory in Fairfax County, Virginia
In June, Virginia’s Governor McAuliffe pledged to uphold the Paris Climate Agreement goals, agreeing to honor the state’s commitment to greenhouse gas reductions of 26-28% of 2005 levels by 2025. Since this time, I’ve been looking into how the state and its counties have addressed climate change mitigation in the past, and I have been researching ways in which we can move forward on 2025 goals. Much remains to be done at the state level, but I wanted to focus on Fairfax County for the time being. Fairfax is the county in which I reside. It is also the most populous county in Virginia. Action taken here to curb greenhouse gas emissions would go a long way in helping the state achieve its 2025 goals.
I started with searching for a greenhouse gas emissions inventory for the county, and found a report that spanned 2006-2010. Borrowing methods from the county inventory, I did a basic update for 2010 to 2015, looking at vehicles and stationary sources (consumption of electricity and natural gas). This inventory as of now does not go as in-depth as the 2010 county report, but it shows the biggest sectors contributing to greenhouse gas emissions in Fairfax.
I am including a chart below, which shows annual emissions from 2005 to 2010 (all emissions have been converted to metric tons of carbon dioxide equivalent or CO2e). Emissions from certain sectors have remained consistently high – vehicles, for instance, while others have fallen. Emissions from electricity consumption have significantly dropped over the past decade, contributing to the overall drop in greenhouse gases emitted from Fairfax County. This is likely due to the shift from coal-fired to natural gas fired power plants that took place over this time frame. Burning natural gas does not produce as much carbon dioxide as burning coal. Technology leading to “cleaner” burning coal may have helped as well. Despite this drop in emissions, over the past couple of years, progress has stalled. Fairfax County is about halfway to its 2025 goals, but the county has a long way to go, in terms of evaluating where new regulations should be put into place, and what changes can be made.
In addition to the individual emission sources, I have charted total emissions against the 2025 goal to demonstrate how much further emissions need to drop for the county to meet reductions pledged in the Paris Climate Agreement. I am finishing up a first draft of a report, and will share the inventory with the blog in the near future. Stay tuned!
Mixed News from Blue Crab Survey
Each year the Maryland Department of Natural Resources, in partnership with UMCES and VIMS, conducts a winter dredge survey to estimate blue crab population numbers in the Chesapeake Bay. The survey gathers information on the total number of crabs, as well as the number of adult males, female crabs of spawning age, and juveniles. Total numbers give an indication of the current health of the blue crab population; the number of juvenile and female crabs of spawning age give an indication of future conditions. Spawning age females impact the beginning of the coming harvest season (April to July, now ongoing); juvenile crabs impact the harvest further down the line.
The 2017 survey brought mixed results. Total population decreased in number from last year’s 553 million count to 455 million.
Population numbers of spawning age females must meet a certain threshold to be considered sustainable (70 million). Virginia and Maryland have also adopted a population target of 215 million. This year’s count of females of spawning age was the highest since the survey was first undertaken in 1988, with a number of 254 million, well above the target number. This number increased from last year’s count of 194 million.
Survey results were not so good for adult males – which decreased by 16% – nor for juveniles. The number of juvenile crabs estimated in this year’s dredge survey was the fourth lowest number ever recorded. This decrease could impact the second half of this year’s harvest (Maryland’s crabbing season runs until December 15; Virginia’s season closes November 30). Scientists on the Chesapeake Bay Stock Assessment Committee are likely to release updated management recommendations to Maryland and Virginia later this summer.
Note: To read more about where the winter dredge survey takes place, and how the survey is conducted, please read this piece from Maryland’s Department of Natural Resources.
Sources: WVTF Public Radio, Maryland DNR
Virginia House and Senate Bills Target Pollution from City of Alexandria’s Combined Sewer System
Late last month I put together a list of environmental bills that were going to come up in the Virginia General Assembly for the 2017 session. I would like to go into more detail on the bills related to Alexandria’s combined sewer system, and provide you with some updates on those bills.
The City of Alexandria has an outdated wastewater management system. Their combined sewer system, which collects both wastewater and stormwater for treatment at Alexandria Renew, is prone to overflow events during periods of heavy rainfall. Overflows discharge millions of gallons of raw sewage into the Potomac River- up to 70 million gallons per year, according to the Potomac Riverkeepers. Raw sewage discharged into the Potomac River negatively impacts water quality and wildlife; causes major public health risks; and exacerbates nutrient pollution in the Chesapeake Bay- a watershed that the state of Virginia has pledged to clean up, through the EPA-mandated Chesapeake Clean Water Blueprint.
Two of the original bills in the 2017 legislative session -House Bill 1423 and Senate Bill 819- targeted discharges from the City of Alexandria’s combined sewer overflow (CSO) system.
House Bill 1423, was first referred to the Committee on Commerce and Labor, has since been referred to the Committee on Agriculture, Chesapeake, and Natural Resources (on 1/19). This bill calls for the Department of Environmental Quality to identify CSO outfalls that discharge into the Potomac River and lay out actions to bring these outfalls into compliance with federal and state laws by July 1, 2027. This bill would directly target Alexandria’s CSO Outfall Site 001.
Senate Bill (SB) 819, introduced by Senator Adam Ebbin (who represents part of Alexandria) called for the City to complete an assessment of needed system improvements and discharges from Alexandria Renew’s outfall sites to the Potomac River watershed by January 1, 2029. Failure to do so would cause the State Water Control Board to hold off on renewing the Virginia Pollutant Discharge Elimination System permit for this wastewater facility. This bill was stricken from the docket of the Committee on Agriculture, Conservation, and Natural Resources on January 12, before it could reach the Senate floor.
Senate Bill 819 seems to have been scrapped in favor of stronger regulation. On January 12, the same committee that killed SB 819 introduced a new bill, which would require the City of Alexandria to eliminate all discharges of sewer into the Potomac River watershed by July 1, 2020, with severe financial penalties enacted for failure to comply. The committee ultimately adopted a substitute (on 1/19) to bring to the Senate floor, lengthening this timeline to 2025.
The City of Alexandria needs to update and reconfigure its combined sewer system to eliminate overflow events, and it needs to do so sooner than the timelines laid out in the recent House and Senate bills if Alexandria is serious about improving water quality and decreasing public health risks. The City of Alexandria released their Long Term Control Plan Update late last year which lays out how they will deal with this issue, but the timeline for this plan is also too long. Many of the proposed fixes would not be fully implemented for at least another 15 years. The DEQ still needs to approve this plan and the City must finalize funding. The Long Term Control Plan Update is several steps away from being put into motion.
The first wastewater treatment facility in the City of Alexandria was constructed in 1956; a combined sewer system existed long before that. This discharge issue is one that has been occurring for decades. It is time to eliminate all discharges of raw sewage to the Potomac River.
Environmental Bills in VA General Assembly 2017 Session Will Focus on Water Quality, Fisheries
I’ve been looking into which environmental bills and resolutions will be coming up at the 2017 Regular Session of the Virginia General Assembly. The state House and Senate will be meeting in exactly two weeks, on January 11. Several of the upcoming bills deal with water quality issues, as well as fisheries and habitat of tidal water. I’ll outline these proposed bills below, sorted via bill subject, and over the next few weeks, post updates on the states of these bills.
*Note: HB refers to House Bill followed by it’s number ID, SB refers to Senate Bill
Waters of the State, Ports, and Harbors
HB 1423/ SB 818: This bill addresses water quality in the Potomac River Watershed by designating the Virginia Department of Environmental Quality (DEQ) to 1. identify point sources when combined sewer overflow outfalls occurs, discharging untreated wastewater into the Potomac River or its tributaries and 2. gives the DEQ the responsibility of following up with owners of these discharge facilities to come up with action plans to reduce combined sewer outfalls. By doing so, the state will be acting in compliance with the Clean Water Act and the EPA’s Combined Sewer Overflow Control Policy (owners of combined sewer overflow sites must be in full compliance with this federal regulation by July 1, 2027).
A combined sewer system is when wastewater and stormwater are carried to a water treatment facility using a combined system of piping (in a separate sewer system, only wastewater is treated; stormwater flows directly into nearby streams). During periods of heavy precipitation, combined sewer systems can easily be overtaxed, leading to overflows of untreated water into streams and rivers. To my knowledge, only three major cities in Virginia still have this combined system and of these, only the city of Alexandria falls within the Potomac River Watershed. Treatment centers in this area would be subject to HB 1423/ SB 818.
Therefore, related to this last bill is SB 819, which if passed, would require the City of Alexandria to assess discharges from its Combined Sewer Outfall Number 001 (which discharges into the Potomac River) by January 2029. The City of Alexandria would have to submit this assessment to the State Water Control Board, and include an outline of actions and control technologies that must be adopted to prevent overflow discharges to the Potomac River.
HB 1454 would designate a stretch of the James River as part of the Virginia Scenic Rivers System. When the General Assembly designates a river, or sections of a river, as part of the Scenic Rivers System, it means it possesses “superior natural and scenic beauty, fish and wildlife, and historic, recreational, geologic, cultural, and other assets” (Code of Virginia, 10.1-400 Definitions). From my research, I cannot tell that this offers any kind of direct additional protection of these waters or habitats, but the designation may be important for outside conservation efforts.
Water and Sewer Systems
HB 1460 addresses the regulation of private wells, and would allow Stafford County to set standards for the construction or abandonment of private wells. Stafford County would join a growing list of state counties already able to set stronger regulations for their private wells. While this is primarily a public health issue, abandoned wells can impact groundwater, which eventually seeps into bodies of water.
Fisheries and Habitat of Tidal Waters
SB 820 would impact the Virginia Marine Resources Commission’s (VMRC) management of the menhaden industry. The bill would require the VMRC to implement the Interstate Fishery Management Plan for Atlantic menhaden and adopt regulations to manage the industry.
Atlantic menhaden can be found along the North American coast, including the Chesapeake Bay Watershed. As these fish are used for a variety of purposes, they have a long history of being overfished. Menhaden are used as bait for other fisheries (including the crabbing industry), and for fish meal and the production of fish oil. Protecting the stock of menhaden in Virginia protects a number of fishery-related industries.
The Impact of Catch Share Programs on Chesapeake Fish Landings
Last week, Libby introduced catch share programs, shared their pros and cons, and briefly outlined existing programs in the Chesapeake Bay region. As a continuation of her previous report, using data from NOAA and the Environmental Defense Fund, she graphed Virginia and Maryland fish landings for several species over a ten-to-twelve-year period. The data for these fish- striped bass, black sea bass, and summer flounder- shows numbers for fish landings both five-to-six years before a catch share program was implemented in each state for each species, and the five years following.
In her former piece, Libby stated that populations of striped bass in the Chesapeake had risen since catch share programs were implemented in Virginia and Maryland. Our first graph for striped bass landings in Virginia (1992 -2004) seems to correlate. Since catch share programs for striped bass were implemented in the Chesapeake region in 1998, both populations and fish landings (in metric tons) for striped bass have increased.
Catch sharing was implemented in Maryland for summer flounder in 2005. The immediate year after implementation, landings decreased, but for the next four years, landings followed an upward trend. It would seem that the catch share program has had a positive impact on harvests for the summer flounder.
Catch share programs do not seem to be having a positive effect on all Chesapeake finfish species, however – at least in terms of harvest numbers. Fish landings for black sea bass (1998-2010) decreased in both Virginia and Maryland after catch share programs were implemented in both states in 2004. It is difficult to tell if catch sharing has been a significant cause for this decline. Landings were decreasing prior to 2004, and continued to do so afterwards. It could be that a combination of factors contributed to a decline in black sea bass landings.
Catch Shares in the Chesapeake Bay and Beyond
By Libby Warner
On our visit to Antipoison Creek, we met with a fisherman who spoke somewhat highly of catch share programs. Afterwards, I investigated the purpose of catch share programs as well as the pros and cons of their implementation.
Catch share programs were originally developed in the United States to promote the economic and environmental stability of fisheries. In 1976, the federal government officially acknowledged that overfishing was a national issue and passed the Magnuson Steven’s Act. This created regional councils to manage fishing practices in different parts of the country. The act was first amended in 1996 with the Sustainable Fisheries Act. This amendment limited fisheries to only fishing during certain times of the year, a method referred to as derby fishing. Fishermen would fish as much as they could during the limited time frame, which resulted in increases in overfishing, illegal poaching, and competition and conflict between recreational and commercial fishermen. There were also several negative economic impacts associated with derby fishing. In 2006, the Magnuson Steven’s Act was amended with the Fishery Conservation and Management Reauthorization Act, which installed various catch share programs throughout the country.
In regions with catch share programs, including the Chesapeake Bay, a total maximum number of allowable catch is instated per annum for a particular species of fish. Individual fishermen and companies are then assigned a TAC, or total allowable catch, a quota based on the number of fish each company caught in the past. Many question the fairness of quotas decided in this fashion. However, the incentive of catch share programs is to limit the amount of fish caught overall rather than limiting the time of year fish can be caught.
In addition to limiting total catch, there are a number of benefits associated with catch share programs. For instance, since the implementation of catch share programs, the Chesapeake Bay, along with other bodies of water throughout the country, have seen a decrease in the number of discards and ghost fish, (fish that get caught in equipment and either die or are lost). There have also been improvements in fishermen safety. During the derby fishing days, fishing was one of the most dangerous jobs in the country. Due to time constraints, fishermen would rush out to catch fish despite poor weather conditions. With the removal of time constraints, catch share programs have provided more full-time jobs, rather than part-time jobs as fishermen now have a year-round season.
Another benefit of catch share fishing is that it increases the quality of fish caught. Since companies own portions of fish stock, they are often more invested in taking care of their stock. Being free to fish any time of year results in fishermen focusing on quality rather than quantity of fish caught. This is especially beneficial for the health of local people who rely on fish as a primary source of protein.
Whether or not catch share programs have actually made fishing more environmentally sustainable is still up for debate. Many argue that proof of success includes rebounds of fish populations across the country, including blue king crab, snow crab, Pacific coast widow rockfish, Atlantic windowpane flounder, and Gulf of Mexico red snapper. While the government has been able to increase total catch limits over time, showing proof of sustainability, many also argue that it is difficult to determine whether or not the rebounds in fish populations are a direct result of catch share programs. Many environmental activists are opposed to catch shares because it is essentially a privatization of public resources. Fishing companies are allowed to trade or sell quota, which results in armchair fishermen, (large fishing companies who sell quota to smaller companies and receive a portion of the profit). Large companies are now more capable of taking over the industry and owning most of the shares. Grassroots environmental activists use the phrase “corporate industrialization of fisheries” to describe the large fishing companies that are becoming monopolies in the fishing world. This is potentially problematic because large corporations in a capitalist society do not always rank environmental interests as a priority. Additionally, although catch share programs have resulted in a shift from part-time jobs to full-time jobs, overall, the monopoly aspect of catch shares has decreased the total number of jobs available.
Catch share programs approach conservation by focusing on individual species of fish rather than looking at aquatic ecosystems as a whole. Many environmental activists argue that the real issue is that, worldwide, there are currently approximately five times as many boats fishing as would be needed to catch a sustainable number of fish. With the implementation of catch share programs, fishermen often respond by simply moving to other parts of the world. Therefore, the total number of fish caught worldwide may not be reduced.
Catch shares are just as controversial in the Chesapeake Bay. Ten years ago, Virginia installed a catch share program in the Bay for striped bass, a population that had been overfished. After the catch share implementation, Virgina has been able to sustainably manage the striped bass population. To implement this program, NOAA provided educational sessions for striped bass fishermen to learn about catch shares and aided fishermen in the transition process from derby fishing to catch share fishing. From an original catch season of three months, the government extended the harvest period for striped bass to eleven months. The Virginia program has also allowed fisheries to be more economically successful.
Another positive result of catch share programs in Virginia is the development of “Chesapeake Catch.” Chesapeake Catch is a smartphone application developed for fishermen in the Bay, allowing them to log their catch and view data regarding other fish caught in the Bay. This has been a successful way for fishermen to come together and communicate within the industry.
Maryland took longer to implement the catch share program for striped bass; a total allowable catch was not instituted until 2014. Catch shares in both Maryland and Virginia have received criticism for putting small fishermen out of business. Throughout the Bay region, many fishermen, particularly smaller family businesses, complain that catch shares have changed their traditional fishing techniques, and allowed larger fishing corporations to control the small companies.
With striped bass being Maryland’s state fish and it’s third most valuable seafood industry, the catch share program implementation for striped bass in Maryland is very significant. Despite the complaints, since the program began, striped bass populations have improved and overfishing has declined in both Maryland and Virginia.
After exploring the different stances people take toward catch shares, and examining the pros and cons of this fishing technique, I have come to the conclusion that overfishing is an extremely complicated issue with no simple solution. It is still relatively unclear whether or not these programs are environmentally sustainable on a global scale. Catch share programs, however, seem to be effective in the Chesapeake Bay watershed. Although there are may be short-term economic downsides to catch shares, there have been ecological benefits in the Chesapeake region.
Sources:
https://www.edf.org/oceans/how-catch-shares-work-promising-solution
http://marinesciencetoday.com/2013/04/09/catch-shares-what-are-they-and-will-they-work/
https://www.youtube.com/watch?v=Sf5GlGDD40M
http://www.nmfs.noaa.gov/sfa/laws_policies/msa/
https://www.youtube.com/watch?v=oJzY5Ml1kd8https://mission-blue.org/2015/12/chesapeake-bay-suffers-from-menhaden-reduction-industry/
http://www.voanews.com/content/catch-shares-aim-sustainable-fishing/2902080.html
http://www.takepart.com/article/2013/03/18/us-fishing-rebound-it-over-small-fishermen
The Chesapeake Bay Stock Assessment Committee Releases Annual Advisory Report on Blue Crabs
We’ve seen reports that the blue crab population is up this season, and activity has certainly increased in Antipoison Creek compared to recent years. We have at least three crabbers with pots at the mouth of the creek, collecting bushels of crabs in the double digits many days. We’re about halfway through the crabbing season, which is when the Chesapeake Bay Stock Assessment Committee (CBSAC) releases their advisory report each summer on blue crabs. Made up of state agencies and scientists from Maryland and Virginia, the most recent publication, issued June 30, echoes other recent reports we’ve read about crab population abundance.
One thing the CBSAC highlights is the abundance of female crabs in the Bay (which gives an indication of how the overall population will look in the next year). The committee keeps track of population estimates for adult female crabs, juvenile crabs, and male crabs in the Bay. The committee also sets threshold limits and targets for adult female population numbers. The threshold limit, the point at which the adult female population should not fall below, is set at 70 million; the target is set at 215 million.
This year at the beginning of the harvest season, the committee counted an estimated 194 million spawning age female crabs, which is a 92% rise from last spring’s count. Because only 15% of adult females were harvested last year, which was below the 25.5% harvest target, and given that 194 million adult females is well above the 70 million threshold, the Stock Assessment Committee has declared that overfishing is not occurring in the Bay.
However, the count of adult females is still something to look out for, regardless of how well the population is doing this year, especially as the current season continues. The CBSAC points out that it was only two years ago when the adult female crab population dropped below the 70 million-threshold mark. Blue crab population numbers can be extremely variable, so a good harvest and population one year does not ensure healthy numbers for the next season.
The CBSAC report includes a list of recommendations to continue to support and increase the blue crab population, which includes expanding blue crab sanctuaries in Virginia (Lower Bay), Maryland (Upper Bay), and parts of the Potomac River (overseen by the Potomac River Fisheries Commission) to protect females of spawning age. The CBSAC also calls for improvements in surveys and data acquisition needed to make more informed estimates of current population numbers. One other recommendation made by the commission, dependent on further assessment, is instating an annual total allowable catch (TAC), which is a fisheries method we will go into more detail on here shortly.
You can check out the full CBSAC 2016 report here.
Bay Grasses Return to Antipoison Creek
We have submerged aquatic vegetation growing off of both sides of our dock this year on Antipoison Creek for the first time in decades. This observed growth follows reports from the Virginia Institute of Marine Science (VIMS) that the acreage of submerged aquatic vegetation in 2015 Bay-wide significantly increased. Acting as a source of habitat for marine species, such as juvenile blue crabs (which we’ve also seen a lot of this year), it’s nice to see even a little improvement in SAV acreage in our local waters.
Using information from VIMS and the Chesapeake Bay Program, I think this specific grass is Ruppia maritima, commonly known as widgeon grass. While there are several species of submerged aquatic vegetation in the Chesapeake Bay Watershed, widgeon grass and eelgrass are two of the most commonly found species, since they can tolerate a range of salinities. Widgeon grass, according to the Chesapeake Bay Program, typically grows in the slightly brackish to salty waters in the upper, middle and lower reaches of the mainstem of the Bay, but can also be found in freshwater tributaries.
I tried to take underwater photos but the water was too murky today for anything to turn out. However, I’ve included photos of the grasses from above, and a strand of the grass laid out to see what it looks like up close.
Water Quality Testing Data on Potomac River, Antipoison Creek
We’ve been working with the Nutrient Analytical Services Laboratory (NASL) at the University of Maryland Center for Environmental Science’s Chesapeake Bay Laboratory for several months now, analyzing water quality in the Potomac River and Antipoison Creek (a small tributary of the Chesapeake Bay on Virginia’s Northern Neck). NASL provides the analytical services for phosphates, nitrates, ammonium, and various forms of chlorophyll (total, active, and phaeophtin), from water samples that we collect, and filter in preparation for analysis. We also measure pH and salinity of these samples. For more on procedures, please see my previous post here.
The sampling sites on the Potomac River are found just north of Riverbend Park’s visitor center. Samples here are collected on foot, with a swing sampler, at three locations (with two samples taken per location, samples “A” and “B” in the data shown below). The Antipoison Creek samples are taken via boat at five or six locations(also with two samples taken per location). Sampling is generally conducted once a month on both bodies of water, or after an extreme precipitation event. Sampling began on Antipoison Creek this past September, and on the Potomac River this past January.
Now that we have a few months of data, we would like to share them here.
The following is ammonium (NH4), phosphate (PO4), and nitrate (NO23) levels, and their averages, at Antipoison Creek from September to December of 2015. We did not start testing for chlorophyll until December of 2015, and only have one month’s worth of data for those parameters.
The following is ammonium (NH4), phosphate (PO4), and nitrate (NO23) levels, and their averages, on the Potomac River from January and February from this year.
Comparing between sampling locations, ammonium, phosphate and nitrate averages from the Potomac River samples are significantly higher than the Antipoison Creek samples. The Antipoison Creek watershed is rural. There is some agriculture going on in the fields surrounding the creek, along with low-density residential development. Antipoison has a great deal of oyster aquaculture taking place within the creek, with personal oyster floats off residential properties, and a commercial production facility located at the mouth of the creek (with thousands of oysters being grown in the vicinity). This is likely having a significant impact on water quality.
The Potomac River watershed, in the area where we are testing, is much more densely populated. Nutrient levels, such as phosphates and nitrates, might be higher due to higher concentrations of polluted runoff coming from suburban developments. There are also no oysters acting as a natural filtration system in this part of the watershed. It will be interesting to compare chlorophyll levels between these locations once enough data is retrieved and analyzed. We’ll keep you posted!
Grasses, Blue Crabs See Comeback
Surveys for both blue crabs and underwater seagrass found increases in population levels and acreage in the Chesapeake Bay this year.
The 2016 joint survey between the Maryland Department of Natural Resources and the Virginia Institute of Marine Science (VIMS) found that there are 35% more blue crabs in the Bay than this time last year. More specifically, the female population reached 194 million individuals, with overall numbers reaching 553 million.
Crab population numbers tend to fluctuate year-to-year, based on a number of factors, such as habitat loss, water temperatures, and harvest levels. The past two years have seen improvements to population numbers, but the blue crab is still considered to be in a state of recovery. Numbers have not reached 800 million, the number of blue crabs found after the first survey in 1988, in many years. With population fluctuation in mind, experts at the Smithsonian Environmental Research Center stated that this year’s good news does not necessarily mean that stricter harvest restrictions in Virginia and Maryland should be lifted. (SERC, 2016).
Crab population levels can be linked to seagrass acreage in the Bay. Seagrass provides habitat and protection for juvenile blue crabs. In past years, seagrass loss has been one predicted cause for blue crab population declines. The most recent survey from VIMS found that Bay seagrass acreage in 2015 was the highest it has been in 30 years. Perhaps these increases correlate to blue crab numbers.
The VIMS survey counted 91,631 acres of seagrass, up 21% from the 2014 survey, and 140% from the first survey in 1984. For more information on growth rates in specific regions (Upper Bay, Mid Bay, Lower Bay), please see the Bay Journal.