Research

Dolphin Sightings in the Bay

Posted on Updated on

Researchers at the University of Maryland’s Center for Environmental Science (UMCES) are trying to keep track of dolphin sightings in the Chesapeake Bay. Both WTOP and the Star Democrat recently reported on the increases in dolphin sightings in the Bay over the summer months in recent years. UMCES now has an interactive map, which a user can add his or her own sightings to. After registering, users can click a location on the map, add the time and date of the sighting, and how many dolphins were spotted.

Funnily enough, I read both of these articles this morning, after spotting a dolphin in Antipoison Creek yesterday morning (7/5). I’ve gone ahead and added my own sighting to the map. Please do the same if you have seen any dolphins in the Bay or one of its tributaries. Doing so allows UMCES researchers to get a better idea of where dolphins are travelling, how often, and why sightings have increased in recent years. You can check out or add to the map here.

Microplastics in Antipoison Creek

Posted on

If you remember, last December G2 sent in water samples from Antipoison Creek to Abby Barrows at Adventure Scientists (see this former post). Abby has been documenting the presence of microplastics in global waters. Microplastics are bits of microscopic plastic debris. A major source of this debris is clothing. As synthetic fibers (many clothing items such as fleeces are made with synthetic fibers) are put through the washing machine, plastic debris from these items come out of homes as wastewater, and eventually make their way to streams, rivers and oceans. Preliminary evidence suggests that marine species are reacting negatively to the ingestion of microplastics.  The team at Adventure Scientists has been accepting water samples from around the globe to determine how prevalent pollution from microplastics is. You can check out their online map to see which waters have not been sampled yet, and sign up to sample if you see an opportunity to contribute.

G2 received results from the Antipoison Creek samples. One blue microfiber was found from our samples. The results were shared via the Adventure Scientists blog here, which also includes a post on Abby’s lab process and overall project results thus far. Go check it out!

f-08212015-21-smile
Image source: Adventurescience.org/microplastic-results. 

My Experience at UMCES: Chesapeake Biological Laboratory

Posted on Updated on

By Libby Warner 

The University of Maryland Center for Environmental Science’s (UMCES) Chesapeake Biological Laboratory (CBL) on Solomon’s Island is a research facility where scientists study various aspects of ecosystems, including restoration ecology, toxicology, and fisheries. On Monday, May 16th, I had the opportunity to visit the center and learn about the different projects taking place on a very informative and inspiring tour given by the CBL Director, Dr. Thomas Miller. Upon arrival, I immediately was struck with the beauty of the location. Red brick buildings with many windows overlook the Patuxent River, which feeds into the Chesapeake Bay. There is a grand, gated-off research pier that extends out into the river and contains a Pump House, which transfers water to various laboratories for testing.

The first stop we made on our tour was the Nutrient Analytical Services Laboratory that tests water quality. This laboratory consists of approximately seven full time scientists whose job is to run water samples through extensive tests that indicate the levels of various chemicals such as phosphorus or nitrogen. These samples can come from a variety of places, ranging from creeks to oceans, and therefore the analysis of these water samples varies. There are two primary methods used for these chemical tests. One method involves a spectrophotometer that relies on robotics and allows very small water samples to be used. The other method is less advanced and has existed since the 1970’s. It involves a complex tubing mechanism that relies on a very specific air pressure system with air bubbles existing every few centimeters in the tubes. This method requires larger water samples, but is beneficial in that it helps the operator gain a better understanding of how the system works. In some instances, it also gives a more accurate reading than the robotics system.

The next stop we made was in the “crabs on acid” laboratory. This lab is used for research on the effects of ocean acidification on blue crab populations in the Chesapeake Bay. A PhD candidate, Hillary Glandon, conducts this research. There are a few large tanks hooked up to the piping system, which collects water from the Patuxent River. The piping system has two pipes, which are alternatingly utilized to prevent the buildup of sediment and barnacles. The large tanks of river water in the laboratory act as different treatment groups, each with a different pH, which is controlled by adding different amounts of CO2. Each large tank feeds into multiple smaller tanks, which host the blue crabs. Originally, the proposed thesis was to determine the effect of ocean acidification on crab shell growth. However, with blue crab shells being difficult to measure due to the molting process that they undergo, Hillary altered her experimental question and is now studying the effect of acidification on blue crab respiration rates. (Lab pictured below).

unnamed-1

After our stop at the blue crab laboratory, we went to a laboratory that measures methane levels in samples of water from the tropics. Another UMCES graduate student pursuing her PhD, Hadley McIntosh, conducts this research. These specific laboratories were a few of the many sites of research at UMCES. There are approximately 20 graduate students currently attending the university in addition to at least a dozen other full time employees who help provide nutrient analytical services. An interesting statistic regarding this gradate program is that about 65% of the students are women.

Overall, this visit inspired me, not only as a science student, but also as a member of the millennial generation. We are a generation of rising world leaders and it will be our responsibility to restore our planet’s environment after the damage it has received from prior generations. Research facilities such as this one on Solomon’s Island give me hope that, with the existence of strong, innovative scientific communities such as this one, we may have a shot at a brighter future.

The author, Libby Warner, our new contributor to the blog, pictured below, collecting water samples on the Chesapeake Bay: 

unnamed